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ABSTRACT 
This work presents an analysis of the thermo-mechanical behavior of rotating discs made of functionally graded 

material (FGM) with variable thickness and constant angular velocity. The solutions are obtained by variable 

material property (VMP) theory. In this theory, the domain is divided into some finite sub-domains in the radial 

direction, in which the thermo-mechanical properties are assumed to be constant and the form of the elastic 

response is used to solve elastic-plastic problems. The results obtained by the VMP method are then compared 

with the results obtained by the finite element analysis using ANSYS software. In addition, the unloading and 

reverse yielding behavior of FG rotating disk are investigated and the residual stresses are then calculated with 

the same values of pressure and temperature by VMP theory and FE analysis. The results reveal that the mentioned 

methods are in very good agreement in both elastic and elasto-plastic states.   

 

Subsequently, the effect of various parameters including the disk geometry, temperature distribution, angular 

velocity, and boundary conditions on the stress behavior of disk is investigated. The results show that unlike the 

uniform rotating discs in which the yielding necessarily initiates from the inner radius, in the FG rotating discs, 

plasticity can be initiated from any point.. 

INTRODUCTION  
Functionally graded materials (FGMs) are a new type of advanced composites, which have been used for many 

engineering applications. The main application of FGMs is in high temperature such as automotive, aircrafts, 

turbine rotors, flywheels, gears etc. In these materials, the volume fraction of the two or more materials is varied 

steadily and non homogeneously as a function of position along thickness [1, 2]. Usually, a ceramic is used at the 

outer surface and a metal is used to another surface, which the volume fraction changes steadily. Within FGMs 

the different microstructural phases have different functions, and the overall FGMs attain the multi-structural 

status from their property gradation. By gradually varying the volume fraction of constituent materials, their 

material properties exhibit a smooth and continuous change from one surface to another [3]. 

 

Noda and Tsuji [4] and Obata et al. [5] considered thermal load in a plate made of FGMs. Tanaka et al. [6, 7], 

Yongdong et al. [8], and Zhong and Yu [9] studied the analysis of stress due to mechanical loads in FGM beams. 

Ravichandran [10] calculated the thermal residual stresses of an FGM material system. 

 

Rotating discs are widely used in various applications in aerospace industries such as gas turbines, jet engines, 

flywheels, cars, pumps, compressors etc. Rotating discs are usually operating at high angular velocities and 

subjected to thermo-mechanical loadings. Recent studies have shown that, at the same angular velocity, the 

stresses developed in a rotating disk (hollow or solid) with variable thickness are much lower than those of a disk 

with uniform thickness are. Gamer [11, 12] investigated a solution for a constant thickness rotating disk. 

 

G𝑢̈ven [13, 14] studied the fully plastic rotating disk with variable thickness and the applicability of Tresca’s 

yield condition to the linear hardening rotating solid disk with variable thickness. 

 

Duva et al. [15] studied the characteristic of FGM disk and strain suppression at stress concentrators. Ha et al. 

[16] investigated the stress distribution in flywheels with functionally graded material under plane strain 

conditions. Zenkour [17] has showed analytical solutions for rotating FGM annular discs with various boundary 

conditions. Durodola and Attia [18] studied deformation and stresses in FG rotating discs. Naghdabadi and 

Hosseini Kordkheili [19] have derived a finite element formulation for the thermo-elastic analysis of FG plates 

and shells. They assumed the power-law distribution model for the composition of the constituent materials in 

shell thickness direction.  

 

Bayat et al. [20] implemented a semi-analytical method to elastic analysis of functionally graded rotating disk 

with variable thickness (see Fig. 1). The material properties and disk thickness profile are assumed to be presented 
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by two power-law distributions. Results revealed that, in functionally graded rotating disk with parabolic or 

hyperbolic convergent thickness profile, stresses and displacements are smaller than that with uniform thickness 

profile. 

 

Afsar and Go [21] concentrated on the finite element analysis of thermo-elastic field in a thin circular functionally 

graded material (FGM) disk subjected to a thermal load and an inertia force due to the rotation of disk. Their 

analysis shows that the thermo-elastic field in such disk is seriously affected by temperature distribution profile, 

thickness of the disk, and angular velocity. 

 

Jahed and Shirazi [22] investigated the effect of loading, residual stress, displacements, and associated strain for 

rotating discs at elevated temperature. 

 

Jahed and Dubey [23] proposed an axisymmetric method for elastic plastic analysis of rotating disk. Farshi et al. 

[24] obtained an optimum profile for rotating disk with plastic deformation by variable material properties theory 

(VMP). 

 

In this paper, stresses and strains are obtained in rotating discs made of functionally graded materials with variable 

thickness under thermo-mechanical loading and residual stresses are then calculated under mechanical unloading. 

The results obtained by the VMP method are then compared with the results obtained by the finite element analysis 

using ANSYS software. These comparisons show that the results from the VMP method are in good agreement 

with FE analysis, thus verifying the reliability and accuracy of the VMP theory. Next, eff and effE , the effective 

Poisson's ratio and effective Young’s modulus by VMP method are investigated. 

 

Finally, the effects of the boundary conditions, temperature gradient, angular velocity, and thickness profile on 

the stress behavior of disk are investigated by the VMP method. 

 

MATHEMATICAL MODEL 
Gradation relation 

Several FGMs are manufactured by two phases of materials with different properties. A detailed description of 

actual graded microstructures is usually not available, except perhaps some information on the volume fraction 

distribution. Since the volume fraction of each phase gradually varies in the gradation direction, the effective 

properties of FGMs change along this direction [3].  

 

A functionally graded rotating disk (inner radius ir , outer radius or , and angular velocity  ) made by mixing 

two distinct material phases, for example a metal and a ceramic, is considered with Cylindrical polar coordinates 

r, θ, and z (see Fig. 1).  It is assumed that, the volume fraction of metal and ceramic follow a simple power law: 

 

, 1i

o i

N

m c m

r r

r r
V V V

 
 


 


                                                                                                       (1) 

 

where CV and mV are the volume fractions of ceramic and metal, respectively and the volume fraction index N

dictates the material variations profile through the FGM. 

So, the effective material properties of the FGM layer, fP , such as Young’s modulus, Poisson's ratio, thermal 

expansion coefficient, density, yield strength, and tangent modulus can then be expressed as: 

 

f m m C CP P V P V                                                                                                                         (2) 

 

where mP  and CP  are the material properties of ceramic and metal, respectively. 

 

The Disk Model 

The thickness profile of disk is assumed vary radially in a form given by  
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 (3) where m  and 
oh  are geometric parameters. m  can be negative or positive and 

oh  is the thickness at the axis 

of the disk.  

Different forms of thickness profile of disk with negative, zero, and positive values of m  are shown in Fig. 2. It 

can be seen that the profile is convergent for 0m   and divergent for 0m  . By considering 0m  , constant 

thickness is obtained. 

 

FORMULATION OF THE PROBLEM 
Governing equations 

Despite the thickness and properties of the rotating disk, the relations between the radial displacement, u , and 

the strains are 

 

,   r

du u

dr r
                                                                                                                           (4) 

 

where r  and   are the total radial and hoop strain, respectively. 

For disk with cylindrical coordinate system, the stress components are defined on the differential element shown 

in Fig. 3.   

Because the thickness of disk is considered to be small in comparison with its diameter, the problem is assumed 

to be plane stress. On the other hand, the inertia force due to the angular velocity of the disk is the only body force 

and because of symmetry, r vanishes. Thus, the equilibrium equation is reduced to [25]  

 

2 2( ) 0r

d
hr h hr

dr
                                                                                                          (5) 

 

where
 

,, rh  and   
are thickness, radial stress, and hoop stress, respectively. 

The deformation of the rotating disk consists of three components: elastic (
e ), plastic (

p ), and thermal (
T ) 

strains. Total strains are the sum of these components: 
e p T

ij ij ij ij                                                                                                                           (6) 
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ij ij kk ij E                                                                                                         (7) 

( 3), 3 2p p

ij ij ij kk eq eq                                                                                             (8) 

T
ij T                                                                                                                                    (9)

 

p

eq  is the 

equivalent plastic strain and eq is the equivalent stress. In this work, analysis is based on von Mises yield 

criterion and eq  is given by: 

2 2

eq r r       
                                                                                                             (10)

 

Eq. (6) can be rewritten in the following form: 

1tot eff eff
ij ij kk ij
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
                                                                                             (11) 

The materials is assumed to follow an elastic linear hardening [25] model for the stress–strain relationship (see 

Fig. 4). 
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where 0  and tE  are the yield strength of the material and tangent modulus, respectively. 

Therefore, following relation is obtained for total strain: 
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Here, eff and effE , the effective Poisson's ratio and effective Young’s modulus, depend on the final state of stress 

at a point and given by [22] 
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Variable material property theory 

In variable material property theory, the domain is divided into some finite uniform sub-domains in the radial 

direction (see Fig. 5), each annulus having the constant thermo-mechanical properties and boundary conditions 

with internal and external pressures as well as temperatures. Then, the form of the elastic response is used to solve 

elastic-plastic problems [22].   

 

For this purpose, first, we should obtain the thermoelastic solution of the disk. 

 

For each rotating annulus with constant mechanical and physical properties and uniform thickness with plane 

stress condition, the elastic solution is Lame's solution [25]: 
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where ,E
 

,  and
 
  are the mechanical and physical properties of each annulus,   is the angular velocity of 

disk, h is the uniform thickness of each annulus, 1r  and 2r  are the inner and outer radiuses, 1F  and 2F  are the 

internal and external forces, and T
 
is the temperature profile in each annulus.  

 

By setting 1r r
 
and 2r r , 1u (displacement at inner radius of each annulus) and 2u (displacement at outer 

radius of each annulus) can be obtained, respectively. 

 

On the other hand, boundary conditions of disk are continuity of displacements and forces in common radiuses of 

neighbor strips and total boundary conditions of disk, namely: 
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in which 

( )kr
 
and ( )kt  are the mean radius and width of thk strip, respectively. 

  

By using above matrix equations for each strip and boundary conditions at interior and exterior radiuses of each 

annulus and the disk, a system of linear equations is constituted. By solving this system of equations, 

displacements and forces at boundaries of each strip will be obtained. 

 

After obtaining the forces in each layer, radial and hoop stresses can be determined by: 
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in which 1A  and 2A are determined as follows: 
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Thermal loading are assumed in this form: 
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To employ the VMP method, effE  and eff should be substituted in the relations of elastic solution. 

 

Calculation of effE and effn  

To evaluate the effE and eff in each strip, an iterative manner is used [22]. This iterative manner will be 

continued until the eq eq  matches on the true stress-strain curve with a small tolerance. There are three 

schemes to evaluate the spatial distribution of effE and eff : (a) Projection method, (b) Arc-length method, and 

(c) Neuber's rule [22]. 

 

In this study, projection method is used to update the effE and
 
eff . In this method, as shown in Fig. 6, first, after 

obtaining the elastic solution of disk and comparing of equivalent stress and yield stress, if eq is greater than 0  

(yield stress), point “a” is developed in true stress-strain curve. From point “a” with the same value of strain, point 

“a’” is produced by projecting on curve of plastic region of material. Then, new effE is determined by

' '( ) ( ) ( )eff new a aE   . By using new effE , this procedure will be continued until the eq eq  matches on true 

stress-strain curve with a small tolerance. It should be noted that if eq is smaller than yield stress, previous 

determined effE and eff should be used. 
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Execution of unloading process 

As soon as the angular velocity reduces, unloading happens in the disk. To evaluate the  unlodaing stresses, a new 

process is developed in which the thermo-mechanical conditions are the same as that in loading process. However, 

the material stress-strain curve is changed because of different material behaviour in loading and unloading 

processes.  

 

The conventional bilinear model with kinematic hardening is plotted in Fig. 7. The reverse yielding in the process 

of unloading occures when the stress value reaches the value 
0U  defined by:  

 

0 02U                                                                                                                                   (19) 

 

Introduced the unloading curves for each annulus and by using the same manner described in the loading process 

with the same thermo-mechanical boundary condition, the unloading behavoiur is determined. 

Then, the residual hoop and radial stresses following unloading process is obtained as follows: 
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in which 
R  and 

H are the radial and hoop stresses, respectively, in loading process and 
U

R and 
U

H  are the 

corresponding stresses obtained from the unloading analysis. 

 

FINITE ELEMENT ANALYSIS 
In the analysis of the disk, which thickness is small in comparison with its diameter, plane stress condition is 

considered. In finite element analysis, commercially availabe software, ANSYS, is employed [26]. 2-D structural 

solid elements (PLANE42) are used to modeling of the disk. Subsequently, the results of the finite element model 

are compared with the results of VMP method. 

 

RESULTS AND DISCUSSION 
For numerical illustrations, one set of material mixture is considered for an FGM rotating disk. The inner radius 

of the FGM rotating disk is metal-rich and the outer radius is ceramic-rich. Material properties of constituents in 

the inner and outer radiuses are presented in Table 1, referred to as mat_1 and mat_2, respectively. For this 

example, the disk geometric parameters are 0.1mir 
 
and 0.5 mor   as the inner and outer radiuses, 

respectively. Thickness profile is assumed to be nonlinear function of radius value of eq. (3), with 0.02oh   and 

0.5m  . 0°CiT   and 350°CoT 
 
are considered as a thermal conditions at the inner and outer radiuses, 

respectively. Variation of temperature profile through the radius of hollow disk due to steady state temperature is 

depicted in Fig. 8. The temperature field is assumed to be the same as eq. (18). Because of higher temperature at 

the outer radius, the outer surface of disk is ceramic-rich. 

 

In this study, the thickness of the disk in comparison with its diameter is small, so plane stress condition can be 

employed.  

 

We first study the convergence of the VMP theory and FE analysis for the given properties between the inner and 

the outer surface of the disk with free-free boundary condition and 500 rad sec  . It’s find that for n=50 

(number of divisions), in VMP theory and FE analysis, the responses are converged. 

 

Then, in Figs. 9 and 10, the effective Young's modulus and effective Poisson’s ratio in the radial direction are 

plotted by using VMP theory. In these figures, we compared the Young's modulus and effective Young's modulus 

as well as Poisson’s ratio and effective Poisson's ratio. As mentioned before, if the disk in certain radius of its 

domain does not inter to plastic region, the effective Young's modulus and the Young's modulus will be the same.  

Then, by use of these values for effective Young's modulus and effective Poisson’s ratio, the results obtained from 

VMP theory and FE analysis are presented and compared in Figs. 11 and 12 for loading and unloading radial and 

hoop stresses, respectively. As observed in these figures, these two methods are in good agreement. Maximum 

difference between them for radial and hoop stresses are 3.2% and 4%, respectively. 
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In addition, radial displacement of the disk are plotted in Fig. 13. Clearly, the comparison is reasonably well and 

the maximum difference between two methods is 0.16%. 

 

The effect of temperature gradient on the effective Young's modulus, radial stress, and hoop stress has been shown 

in Figs. 14-16, respectively. For simplicity of numerical calculations, the temperature at the inner surface remains 

unchanged, i.e. 0°CiT  ; and the temperature at the outer surface is changed. 

 

The previous research on the uniform rotating disk reveals that the yielding initiates from the inner radius [25], 

while as is presented in Fig. 14, plasticity in FG disk could be initiated at any point.          

 

From Fig. 15, it can be seen that in lower temperature gradient, the value of hoop stress at the inner radius are 

larger than that at the outer radius and with increases in temperature gradient, the maximum value of hoop stress 

occurs at the outer surface of the disk. Furthermore, there exists two points on the domain, i.e., 0.216mr  and 

0.46mr
 
in which the changes in the temperature gradient have no effect on the hoop stresses.         

 

From Fig. 16, it is found that the radial stresses increase as the temperature gradient between the inner and outer 

surfaces of the disk increases; and the location of maximum stress approaches to the inner radius. It can also be 

seen that radial stresses have the same value at 0.4mr . That means there is an interior radius in the disk in 

which the temperature gradient has the least effect on radial stresses. Passing through this point, the effect of 

temperature gradient on radial stress reverses. 

 

Figs. 17-19 give the effect of different profile thickness on the effective Young's modulus, radial stresses, and 

hoop stresses with changing m  in Eq. (3). As mentioned before, in the hyperbolic profile as Eq. (3), for 0m  , 

the profile is divergent and for 0m  , the profile is convergent. The constant thickness is obtained for 0m  .  

 

It can be seen that from Fig. 17, the most plastic region occurs in the disk with 1m   (divergent profile) and 

disk with 1m  (convergent profile) have the minimum plastic region. Moreover, it can be concluded that the 

plastic area decreases as m increases.       

 

Fig. 18 shows that the disk with divergent or convergent profile has smaller maximum radial stress than that with 

constant thickness. It can also be seen that for both divergent and convergent thickness profile of disk, the radial 

stress decreases as the order of hyperbola, m , increases.  

 

It is evident from Fig. 19 that in the disk with convergent profile, hoop stress is lower than that in the disk with 

divergent profile, as well as constant profile. In addition, the difference of hoop stresses between the inner and 

outer radiuses is lower for the disk with 1.m   It means that the disk with convergent thickness have more 

smooth stress distribution.     

 

Then, the effect of the angular velocity on the disk is investigated. The obtained results for radial and hoop stresses 

along the radius of disk are plotted in Figs. 20 and 21, respectively. 

 

As it is expected, the radial stresses (see Fig. 20) increases as the angular velocity increases which is due to its 

direct effect on the body force and the changes are significant. Furthermore, in low angular velocity, radial stress 

is compressive around the outer radius of disk. It can also be seen that the change in angular velocity moves the 

location of maximum radial stress outward. Whereas the maximum value of hoop stress is located at the inner 

radius for each angular velocity value (see Fig. 21). Furthermore, as the angular velocity increases, difference of 

hoop stresses between the inner and outer radiuses is increased significantly.      

 

Finally, we present the influence of different boundary conditions on the stresses. Boundary condition of the disk 

depends on the way that the disk is attached to the shaft. For this purpose, four sets of boundary condition, i.e. 

free-free, free-free with internal pressure  ( 100MPaiP  ), clamped-free, and clamped-clamped are considered 

at the inner and outer surfaces of disk. Fig. 22 shows that the disk with clamped-clamped boundary condition has 

the most plastic part while that one with free-free boundary condition has the least plastic region. Furthermore, 

from Fig. 23, it can be seen that the disk with clamped-clamped edge boundary condition has the highest 

maximum compressive radial stress and the disk with clamped-free boundary condition has the highest maximum 
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tensile stress. In addition, Fig. 24 shows that the disk under the effect of internal pressure has the highest tensile 

hoop stress and that one with clamped-clamped boundary condition undergoes the highest maximum compressive 

hoop stress. 

 

CONCLUSIONS 
In this paper, thermoplastic analysis of functionally graded rotating disk with variable thickness is solved by using 

the variable material property theory. In this theory, the elastic response is used to solve the inelastic problem, 

with substitution appropriate effective Young's modulus that obtained from true stress-strain curve. The unloading 

behavior of disk is also obtained in the same manner. The results obtained by the VMP method are then compared 

with the results obtained by the finite element analysis using ANSYS software. The results reveal that mentioned 

methods are in very good agreement in both elastic and plastic states.  

 

Finally, the effect of temperature gradient, the order of thickness profile, angular velocity, and boundary 

conditions on the stress behavior of disk was investigated. The results show that these parameters have significant 

effects on stress behavior of the discs and the discs with variable thickness profile have smaller stresses than those 

with constant thickness. Moreover, it can be found that unlike the uniform rotating discs in which the yielding 

necessarily initiates from the inner radius, in the FG rotating discs, plasticity can be initiated from any point.  
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FIGURES 

 

 
Fig. 1. Configuration of a thin disk with variable thickness [20]. 

 

 
Fig. 2. Thickness profile of disk (a) convergent, (b) divergent, and (c) constant. 
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Fig. 3. Stress components in cylindrical coordinates. 

 

 
Fig. 4. Idealized stress-strain curve for linear hardening materials [25]. 

 

 
Fig. 5. (a) Rotating disk with boundary condition, (b) a ring of rotating disk with its boundary condition. 

 
Fig. 6. Projection method. 
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Fig.7. The conventional bilinear model with kinematic hardening. 

 

 
Fig. 8. Steady state temperature distribution of rotating disk. 
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Fig. 9. The effective Young's modulus of disk under thermo-mechanical boundary conditions along the radius. 

 

 
Fig. 10. The effective Poisson's ratio of disk under thermo-mechanical boundary conditions along the radius. 
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Fig. 11. Comparison of hoop and residual hoop stresses between the finite element method and VMP. 

 

 
Fig. 12. Comparison of radial and residual radial stresses between the finite element method and VMP. 
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Fig. 13. Comparison of displacement between the finite element method and VMP . 

 

 
Fig. 14. Effect of temperature gradient changes on the effective Young's modulus of FG rotating disk. 

 

 
Fig. 15. Effect of temperature gradient changes on the hoop stresses of FG rotating disk. 
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Fig. 16. Effect of temperature gradient changes on the radial stresses of FG rotating disk. 

 

 
Fig. 17. Effect of thickness profile change on the effective Young's modulus of the FG rotating disk. 

 
Fig. 18. Effect of thickness profile changes on the radial stress of FG rotating disk. 
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Fig. 19. Effect of thickness profile changes on the hoop stress of FG rotating disk. 

 
Fig. 20. Effect of angular velocity changes on the radial stress of FG rotating disk. 

 

 
Fig. 21. Effect of angular velocity changes on the hoop stress of FG rotating disk. 
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Fig. 22. Effect of different boundary conditions on the effective Young's modulus of FG rotating disk. 

 

 
Fig. 23. Effect of boundary conditions on the radial stress of FG rotating disk. 

 

 
Fig. 24. Effect of boundary conditions on the hoop stress of FG rotating disk. 
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Table 1 Properties of constituents of FG rotating disk. 

 Young's 

modulus 

(GPa) 

Tangent 

modulus 

(GPa) 

Poisson's 

ratio 

Density 

(kg/m3) 

Yield 

strength 

(MPa) 

Thermal expansion 

coefficient (1 °C ) 

mat_1 69 27 0.34 2715 150 23×10-6 

mat_2 115 57 0.293 4515 1030 8×10-6 

 


